CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Bounds on M/R for charged objects with positive cosmological constant

Håkan Andréasson (Institutionen för matematiska vetenskaper, matematik) ; C. G. Bohmer ; A. Mussa
Classical and Quantum Gravity (0264-9381). Vol. 29 (2012), 9,
[Artikel, refereegranskad vetenskaplig]

We consider charged spherically symmetric static solutions of the Einstein-Maxwell equations with a positive cosmological constant Lambda. If r denotes the area radius, m(g) and q the gravitational mass and charge of a sphere with area radius r respectively, we find that for any solution which satisfies the condition p + 2p(perpendicular to) +/- <= rho, where p >= 0 and p(perpendicular to) are the radial and tangential pressures respectively, rho >= 0 is the energy density, and for which 0 <= q(2)/r(2) + Lambda r(2) <= 1, the inequality m(g)/r <= 2/9 + q(2)/3r(2)-Lambda r(2)/3 + 2/9 root 1 + 3q(2)/r(2) + 3 Lambda r(2) holds. We also investigate the issue of sharpness, and we showthat the inequality is sharp in a few cases but generally this question is open.

Nyckelord: general-relativistic objects

Denna post skapades 2012-05-22.
CPL Pubid: 157903


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Astronomi, astrofysik och kosmologi

Chalmers infrastruktur