CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Applicability of in vitro models in prediciting the in vivo bioavailability of lycopene and beta-carotene from differently processed soups

Marie Alminger (Institutionen för kemi- och bioteknik, Livsmedelsvetenskap) ; Cecilia Svelander (Institutionen för kemi- och bioteknik, Livsmedelsvetenskap) ; Anna Wellner (Institutionen för kemi- och bioteknik, Livsmedelsvetenskap) ; Rebeca Martinez-Tomas ; Lucy Bialek ; Elvira Larque ; Fransisca Perez-Llamas
Food and Nutrition Sciences (2157-944X). Vol. 3 (2012), 4, p. 477-489.
[Artikel, refereegranskad vetenskaplig]

Presently, there is no clear consensus on the best approach to estimate carotenoid bioavailability. The best alternative would be to use human studies, but they are labour-intensive and expensive and can only be used to investigate a lim-ited number of samples. Hence, a number of in vitro models have been developed to study pre-absorptive processes and factors affecting bioavailability. The question is, however, how well the results obtained by the various methods correlate to each other and to the in vivo situation. In the present paper, we have compared in vivo data from two human studies on differently processed soups containing carrots, tomato and broccoli, with results obtained by in vitro characterisation of the same soups. In vitro bioaccessibility was estimated by a static in vitro digestion investigating matrix release and micellarization of carotenoids and by uptake studies in a human intestinal cell line (Caco-2). In vivo data was obtained from clinical studies measuring total plasma carotenoid concentrations in human subjects after 4 weeks daily consumption of the soups. Comparison of the in vitro and in vivo results indicate that the combination of a two-step in vitro digestion and Caco-2 cells seems to be a useful tool for estimation of β-carotene bioaccessibility and screening of factors governing the release of β-carotene from this type of food. For lycopene the in vitro and in vivo results were less consistent, suggesting that reliable prediction of lycopene bioavailability might be more problematic.

Nyckelord: In vitro digestion; human; uptake; Caco-2 cells; beta-carotene; lycopene; carotene bioavailability

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-05-09. Senast ändrad 2015-06-12.
CPL Pubid: 157474


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Livsmedelsvetenskap (2005-2014)


Biologiska vetenskaper

Chalmers infrastruktur