CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A note on a paper of Harris concerning the asymptotic approximation to the eigenvalues of -y''+qy=\lambda y, with boundary conditions of general form

Mahdi Hormozi (Institutionen för matematiska vetenskaper, matematik)
Boundary Value Problems (1687-2770). p. Article Number: 40. (2012)
[Artikel, refereegranskad vetenskaplig]

In this paper, we derive an asymptotic approximation to the eigenvalues of the linear differential equation $$ -y''(x)+q(x)y(x)=\lambda y(x),\hskip 1.4 true cm x\in (a,b) $$ with boundary conditions of general form, when $q$ is a measurable function which has a singularity in $(a,b)$ and which is integrable on subsets of $(a,b)$ which exclude the singularity.

Nyckelord: Sturm–Liouville equation, boundary condition, Prufer transformation



Denna post skapades 2012-04-12. Senast ändrad 2016-11-07.
CPL Pubid: 156598

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematisk analys

Chalmers infrastruktur