CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers

Héctor Martínez Ávila (Institutionen för kemi- och bioteknik, Polymerteknologi) ; Christian Brackmann (Institutionen för kemi- och bioteknik, Molekylär mikroskopi) ; Annika Enejder (Institutionen för kemi- och bioteknik, Molekylär mikroskopi) ; Paul Gatenholm (Institutionen för kemi- och bioteknik, Polymerteknologi)
Journal of Biomedical Materials Research Part A (1549-3296). Vol. 100A (2012), 4, p. 948-957.
[Artikel, refereegranskad vetenskaplig]

Cellulose perforated by micro-channels (phi? similar to 500 mu m) has been investigated as a potential future scaffold material for meniscus implants. Scaffolds seeded with 3T6 fibroblasts were cultivated with mechanical stimulation in a compression bioreactor for enhanced collagen production. Constructs under dynamic compression at a frequency of 0.1 Hz and compression strain of 5% were compared to static cultures used as controls. The three-dimensional distributions of collagen fibers and fibroblasts in the cellulose scaffolds were studied under native, soft-matter conditions by combined second harmonic generation and coherent antiStokes Raman scattering microscopy, requiring no artificial sample preparation. Results showed that the micro-channels facilitated the alignment of cells and collagen fibers and that collagen production was enhanced by mechanical stimulation. Thus, cell-seeded, micro-channeled cellulose scaffolds provided guided tissue growth required to obtain an ultrastructure mimicking that of the meniscus.

Nyckelord: bacterial cellulose, micro-channels, mechanical stimulation, collagen, structure, SHG, CARS microscopy

Denna post skapades 2012-04-12. Senast ändrad 2017-01-27.
CPL Pubid: 156574


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Polymerteknologi (2005-2014)
Institutionen för kemi- och bioteknik, Molekylär mikroskopi (2008-2014)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Biofabrication, Biomechanics and Biocompatibility of Nanocellulose-based Scaffolds for Auricular Cartilage Regeneration