### Skapa referens, olika format (klipp och klistra)

**Harvard**

Burman, Å. och Ström, K. (2011) *Excess Enthalpy and Vapor-Liquid Equilibria with the MHV2 and Soave Mixing Rules*.

** BibTeX **

@article{

Burman2011,

author={Burman, Åsa U and Ström, Krister},

title={Excess Enthalpy and Vapor-Liquid Equilibria with the MHV2 and Soave Mixing Rules},

journal={Chemical Engineering Communications},

issn={0098-6445},

volume={198},

issue={11},

pages={1435-1452},

abstract={Calculations and predictions of excess enthalpy (H-E) and vapor-liquid equilibrium (VLE) were performed using the Gibbs energy mixing rules MHV2 and a modification of it by Soave. The Soave-Redlich-Kwong equation of state was combined with the UNIQUAC equation. Four sets of parameters estimated in the UNIQUAC model were used for each of seven binary systems: the first estimated from VLE data, the second and the third estimated from H-E data for two versions of the UNIQUAC equation, and the fourth estimated from both H-E and VLE data simultaneously. It was found that H-E calculations can be performed with the mixing rules; the average relative errors fell from around 200% for the conventional mixing rule to around 60% for MHV2 combined with DECHEMA UNIQUAC parameters and was as little as 20% when the UNIQUAC parameters had been estimated from H-E and VLE data simultaneously. However, the approach suffers from the same shortcomings as far as cross-prediction between H-E and VLE data is concerned, as does the UNIQUAC equation used alone. There is a discrepancy between values obtained with the mixing rule and those obtained with the UNIQUAC equation directly. This discrepancy is smaller for the Soave modification of the mixing rule.},

year={2011},

keywords={Equation of state, Excess enthalpy, Mixing rule, Vapor-liquid equilibria, equation-of-state, unifac-based equation, phase-equilibria, thermodynamic properties, uniquac equation, cubic equations, high-pressures, water-system, gibbs energy, mixtures},

}

** RefWorks **

RT Journal Article

SR Electronic

ID 156499

A1 Burman, Åsa U

A1 Ström, Krister

T1 Excess Enthalpy and Vapor-Liquid Equilibria with the MHV2 and Soave Mixing Rules

YR 2011

JF Chemical Engineering Communications

SN 0098-6445

VO 198

IS 11

SP 1435

OP 1452

AB Calculations and predictions of excess enthalpy (H-E) and vapor-liquid equilibrium (VLE) were performed using the Gibbs energy mixing rules MHV2 and a modification of it by Soave. The Soave-Redlich-Kwong equation of state was combined with the UNIQUAC equation. Four sets of parameters estimated in the UNIQUAC model were used for each of seven binary systems: the first estimated from VLE data, the second and the third estimated from H-E data for two versions of the UNIQUAC equation, and the fourth estimated from both H-E and VLE data simultaneously. It was found that H-E calculations can be performed with the mixing rules; the average relative errors fell from around 200% for the conventional mixing rule to around 60% for MHV2 combined with DECHEMA UNIQUAC parameters and was as little as 20% when the UNIQUAC parameters had been estimated from H-E and VLE data simultaneously. However, the approach suffers from the same shortcomings as far as cross-prediction between H-E and VLE data is concerned, as does the UNIQUAC equation used alone. There is a discrepancy between values obtained with the mixing rule and those obtained with the UNIQUAC equation directly. This discrepancy is smaller for the Soave modification of the mixing rule.

LA eng

DO 10.1080/00986440903287874

LK http://dx.doi.org/10.1080/00986440903287874

OL 30