CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Some error estimates for the lumped mass finite element method for a parabolic problem

P. Chatzipantelidis ; R. D. Lazarov ; Vidar Thomée (Institutionen för matematiska vetenskaper, matematik)
Mathematics of Computation (0025-5718). Vol. 81 (2012), 277, p. 1-20.
[Artikel, refereegranskad vetenskaplig]

We study the spatially semidiscrete lumped mass method for the model homogeneous heat equation with homogeneous Dirichlet boundary conditions. Improving earlier results we show that known optimal order smooth initial data error estimates for the standard Galerkin method carry over to the lumped mass method whereas nonsmooth initial data estimates require special assumptions on the triangulation. We also discuss the application to time discretization by the backward Euler and Crank-Nicolson methods.

Nyckelord: Lumped mass method, parabolic partial differential equations, nonsmooth, initial data, error estimates, equations

Denna post skapades 2012-02-22.
CPL Pubid: 155315


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Tillämpad matematik

Chalmers infrastruktur