CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Influence of Triplet State Multidimensionality on Excited State Lifetimes of Bis-tridentate Ru(II) Complexes: A Computational Study

T. Osterman ; Maria Abrahamsson (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Hans-Christian Becker (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; L. Hammarstrom ; P. Persson
Journal of Physical Chemistry A (1089-5639). Vol. 116 (2012), 3, p. 1041-1050.
[Artikel, refereegranskad vetenskaplig]

Calculated triplet excited state potential energy surfaces are presented for a set of three bis-tridentate Ru(II)-polypyridyl dies covering a wide range of room temperature excited state lifetimes: [Ru(II)(tpy)(2)](2+), 250 ps; [Ru(II)(bmp)(2)](2+), 15 ns; and [Ru(II)(dqp)(2)](2+), 3 mu s (tpy is 2,2':6',2 ''-terpyridine, bmp is 6-(2-picoly1)-2,2'-bipyridine, and dqp is 2,6-di(quinolin-8-yl)Fridine). The computational results provide a multidimensional view of the (3)MLCT-(3)MC transition for the investigated complexes. Recently reported results of significantly prolonged (3)MLCT excited state lifetimes of bis-tridentate Ru(II)-complexes, for example [Ru(II)(dqp)(2)](2+), are found to correlate with substantial differences in their triplet excited state multidimensional potential energy surfaces. In addition to identification of low-energy transition paths for (3)MLCT-(3)MC conversion associated with simultaneous elongation of two or more Ru-N bonds for all investigated complexes, the calculations also suggest significant differences in (3)MLCT state volume in the multidimensional reaction coordinate space formed from various combinations of Ru-N bond distance varix:ions. This is proposed to be an important aspect for understanding the large differences in experimentally observed (3)MLCT excited state lifetimes. The results demonstrate the advantage of considering multidimensional potential energy surfaces beyond the Franck-Condon region in order to predict photophysical and photochemical properties of bis-tridentate Ru(II)-polypyridyl dyes and related metal complexes.

Nyckelord: ruthenium polypyridyl complexes, density-functional theory, photophysical properties, artificial photosynthesis, coordination-compounds, chelate complexes, electron-transfer, molecular, arrays, room-temperature, ligands

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-02-21. Senast ändrad 2017-09-14.
CPL Pubid: 155271


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Fysikalisk kemi (2005-2014)


Nanovetenskap och nanoteknik
Fysikalisk kemi

Chalmers infrastruktur