CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Response of the Shockley surface state to an external electrical field: A density-functional theory study of Cu(111)

Kristian Berland (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; T. L. Einstein ; Per Hyldgaard (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem)
Physical Review B (1098-0121). Vol. 85 (2012), 3,
[Artikel, refereegranskad vetenskaplig]

The response of the Cu(111) Shockley surface state to an external electrical field is characterized by combining a density-functional theory calculation for a slab geometry with an analysis of the Kohn-Sham wave functions. Our analysis is facilitated by a decoupling of the Kohn-Sham states via a rotation in Hilbert space. We find that the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic contribution beyond. We calculate the shift in energetic position and effective mass of the surface state for an electrical field perpendicular to the Cu(111) surface; the response is linear over a broad range of field strengths. We find that charge transfer occurs beyond the outermost copper atoms and that accumulation of electrons is responsible for a quarter of the screening of the electrical field. This allows us to provide well converged determinations of the field-induced changes in the surface state for a moderate number of layers in the slab geometry.

Nyckelord: high-resolution photoemission, der-waals interaction, mediated, 3-adsorbate interaction, adsorbate-adsorbate interactions, dependent, electronic-structure, scanning-tunneling-microscopy, noble-metal, surfaces, quantum corrals, 2nd-harmonic generation, wannier functions

Denna post skapades 2012-02-17. Senast ändrad 2017-10-03.
CPL Pubid: 155188


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)



Chalmers infrastruktur