CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Natural Language Generation from Class Diagrams

Håkan Burden ; Rogardt Heldal (Institutionen för data- och informationsteknik, Software Engineering (Chalmers))
MoDeVVa 2011, MoDELS Workshop on Model-Driven Engineering, Verification and Validation (2011)
[Konferensbidrag, refereegranskat]

A Platform-Independent Model (PIM) is supposed to capture the requirements specified in the Computational Independent Model (CIM). It can be hard to validate that this is the case since the stakeholders might lack the necessary training to access the information of the software models in the PIM. In contrast, a description of the PIM in natural language will enable all stakeholders to be included in the validation. We have conducted a case study to investigate the possibilities to generate natural language text from Executable and Translatable UML. In our case study we have considered a static part of the PIM; the structure of the class diagram. The transformation was done in two steps. In the first step, the class diagram was transformed into an intermediate linguistic model using Grammatical Framework. In the second step, the linguistic model is transformed into natural language text. The PIM was enhanced in such a way that the generated texts can both paraphrase the original software models as well as include the underlying motivations behind the design decisions.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-01-17. Senast ändrad 2016-11-09.
CPL Pubid: 153450

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för data- och informationsteknik (GU) (GU)
Institutionen för data- och informationsteknik, Software Engineering (Chalmers)

Ämnesområden

Informations- och kommunikationsteknik
Datalogi

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Three Studies on Model Transformations - Parsing, Generation and Ease of Use