CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On Exceptions in the Brauer-Kuroda Relations

Juliusz Brzezinski (Institutionen för matematiska vetenskaper, matematik)
Bulletin of the Polish Academy of Sciences Mathematics (0239-7269). Vol. 59 (2011), 3, p. 207-214.
[Artikel, refereegranskad vetenskaplig]

Let F be a Galois extension of a number field k with Galois group G. The Brauer-Kuroda theorem gives an expression of the Dedekind zeta function of the field F as a product of the zeta functions of some of its subfields containing k, provided the group G is not exceptional. In this paper, we investigate the exceptional groups. In particular, we determine all nilpotent exceptional groups and give a sufficient condition for a group to be exceptional. We give many examples of nonnilpotent solvable and nonsolvable exceptional groups.

Nyckelord: exceptional group, Brauer-Kuroda relation

together with Jerzy Browkin and Kejian Xu

Denna post skapades 2012-01-10.
CPL Pubid: 152211


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur