CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

CS versus MAP and MMOSPA for Multi-Target Radar AOAs

David Crouse ; Peter Willett ; Lennart Svensson (Institutionen för signaler och system, Signalbehandling) ; Yaakov Bar-Shalom
Proc. 45th Asilomar Conference on Signals, Systems and Computers (2011)
[Konferensbidrag, refereegranskat]

We expand upon existing the literature regarding using Minimum Mean Optimal Sub-Pattern Assignment error (MMOSPA) estimates in multitarget tracking to apply it to angular superresolution of closely-space targets, noting its advantages in comparison to Maximum a Posteriori (MAP) and Minimum Mean Squared Error (MMSE) estimation. MMOSPA estimators sacrifice target labeling, but in doing so they can (often) avoid coalescence of estimates of closely-spaced objects. A compressive sensing solution, which is a form of MAP estimation, is also considered and is solved via a brute force search, which, contrary to popular belief, is computationally feasible when the number of targets is low, having execution times on the order of tens of milliseconds for two targets on a linear array.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-01-10. Senast ändrad 2012-02-20.
CPL Pubid: 152138