CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Oxygen Dissociation by Concerted Action of Di-Iron Centers in Metal

Stefano Fabris ; Sebastian Stepanow ; Nian Lin ; Pietro Gambardella ; Alexandre Dmitriev (Institutionen för teknisk fysik, Bionanofotonik) ; Jan Honolka ; Stefano Baroni ; Klaus Kern
Nano Lett. (1530-6984). Vol. 11 (2011), p. 5414.
[Artikel, refereegranskad vetenskaplig]

The high chemical reactivity of unsaturated metal sites is a key factor for the development of novel devices with applications in sensor engineering and catalysis. It is also central in the research for sustainable energy concepts, e.g., the efficient production and conversion of chemical fuels. Here, we study the process of oxygen dissociation by a surface-supported metal organic network that displays close structural and functional analogies with the cofactors of non-heme enzymes. We synthesize a two-dimensional array of chemically active di-iron sites on a Cu(001) surface wheremolecular oxygen readily dissociates at room temperature. We provide an atomic-level structural and electronic characterization before and after reaction by combining scanning tunneling microscopy, X-ray absorption spectroscopy, and density functional theory. The latter identifies a novel mechanism for O2 dissociation controlled by the cooperative catalytic action of two Fe2+ ions. The high structural flexibility of the organic ligands, the mobility of the metal centers, and the hydrogen bonding formation are shown to be essential for the functionality of these active centers allowing to mimick biologically relevant reactions in a confined environment.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2012-01-05. Senast ändrad 2012-09-19.
CPL Pubid: 151744

 

Institutioner (Chalmers)

Institutionen för teknisk fysik, Bionanofotonik (2007-2015)

Ämnesområden

Materialvetenskap
Nanovetenskap och nanoteknik
Ytor och mellanytor
Yt- och kolloidkemi
Materialfysik med ytfysik

Chalmers infrastruktur