CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Strict and nonstrict positivity of direct image bundles

Bo Berndtsson (Institutionen för matematiska vetenskaper, matematik)
Mathematische Zeitschrift (0025-5874). Vol. 269 (2011), 3-4, p. 1201-1218.
[Artikel, refereegranskad vetenskaplig]

This paper is a sequel to (Berndtsson in Ann Math 169:531-560, 2009). In that paper we studied the vector bundle associated to the direct image of the relative canonical bundle of a smooth Kahler morphism, twisted with a semipositive line bundle. We proved that the curvature of a such vector bundles is always semipositive (in the sense of Nakano). Here we address the question if the curvature is strictly positive when the Kodaira-Spencer class does not vanish. We prove that this is so provided the twisting line bundle is strictly positive along fibers, but not in general.

Nyckelord: manifolds, space

Denna post skapades 2011-12-22. Senast ändrad 2016-09-14.
CPL Pubid: 150751


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur