CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Beurling-Fourier algebras on compact groups: spectral theory

Jean Ludwig ; Nico Spronk ; Lyudmila Turowska (Institutionen för matematiska vetenskaper, matematik)
Journal of Functional Analysis (0022-1236). Vol. online (2011),
[Artikel, refereegranskad vetenskaplig]

For a compact group $G$ we define the Beurling-Fourier algebra $A_\omega(G)$ on $G$ for weights $\omega$ defined on the dual $\what G$ and taking positive values. The classical Fourier algebra corresponds to the case $\omega$ is the constant weight 1. We study the Gelfand spectrum of the algebra realizing it as a subset of the complexification $G_{\mathbb C}$ defined by McKennon and Cartwright and McMullen. In many cases, such as for polynomial weights, the spectrum is simply $G$. We discuss the questions when the algebra $A_\omega(G)$ is symmetric and regular. We also obtain various results concerning spectral synthesis for $A_\omega(G)$.

Nyckelord: Beurling-Fourier algebra, group

Denna post skapades 2011-12-20.
CPL Pubid: 150572


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Matematisk analys

Chalmers infrastruktur