CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Estimation of Extreme Ship Response

Wengang Mao (Institutionen för matematiska vetenskaper, matematisk statistik) ; Igor Rychlik (Institutionen för matematiska vetenskaper, matematisk statistik)
Journal of Ship Research (0022-4502). Vol. 56 (2012), 1, p. 23-34.
[Artikel, refereegranskad vetenskaplig]

In practice the severity of ship response is measured by high quantiles of long-term distribution of the response. The distribution is estimated by combining the short-term distribution of the response with a long-term probability distribution of encountered sea states. The paper describes an alternative approach, the so-called Rice’s method, based on estimation of expected number of upcrossings of high levels by stress during 1 year. The method requires description of long-term variability of the standard deviation, skewness, kurtosis, and zero upcrossing frequency of ship response. It is assumed that the parameters are functions of encountered significant wave height, heading angle, and ship speed. The relation can be estimated from the measured stresses or computed by dedicated software assuming rigid ship hull model. Then Winterstein’s transformed Gaussian model is used to estimate the upcrossing rates of response during a sea state. The proposed method is validated using the full-scale measurements of a 2,800 TEU container ship during the first 6 months of 2008. Numerical estimation of 4,400 TEU container ship extreme response illustrates the approach when no measurements are available.

Nyckelord: extreme response, long-term distribution, waves

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-12-16. Senast ändrad 2017-11-29.
CPL Pubid: 150278


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)


Hållbar utveckling
Matematisk statistik
Övrig teknisk mekanik

Chalmers infrastruktur