CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Results on Binary Linear Codes With Minimum Distance 8 and 10

I. G. Bouyukliev ; Erik Jakobsson (Institutionen för matematiska vetenskaper, matematisk statistik)
IEEE Transactions on Information Theory (0018-9448). Vol. 57 (2011), 9, p. 6089-6093.
[Artikel, refereegranskad vetenskaplig]

All linear binary codes with minimum distance 8 and codimension up to 14 and all codes with minimum distance 10 and codimension up to 18 are classified. Nonexistence of codes with parameters [33, 18, 8] and [33, 14, 10] is proved. This leads to 8 new exact bounds for binary linear codes. Primarily two algorithms considering the dual codes are used, namely extension of dual codes with a proper coordinate, and a fast algorithm for finding a maximum clique in a graph, which is modified to find a maximum set of vectors with the right dependency structure.

Nyckelord: Algorithms, classification of codes, linear codes, optimal codes, length

Denna post skapades 2011-12-08.
CPL Pubid: 149771


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)


Information Technology

Chalmers infrastruktur