CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Bismuth incorporation and lattice contraction in GaSbBi and InSbBi

Shumin Wang (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Yuxin Song (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; I. S. Roy
13th International Conference on Transparent Optical Networks, ICTON 2011, Stockholm, 26-30 June 2011 (2162-7339). (2011)
[Konferensbidrag, refereegranskat]

III-V-Bi compounds have received considerable attention recently due to a number of interesting material properties. For example, adding a small amount of Bi atoms in conventional III-Vs leads to a large bandgap reduction that occurs predominately in the valence band, about 88 meV/%Bi in GaAsBi. The Bi incorporation affects only the valence band structures and has little influence on electrons. Compared with dilute nitrides, the electron mobility of dilute GaAsBi is much less affected and photoluminescence intensity increases with the Bi incorporation. Dilute GaAsBi also introduces a large spin-orbit split and it has been suggested to use this property to suppress Auger recombination for 1.55 μm lasers on GaAs [1]. So far most experimental studies have been focused on growth of GaAsBi [2], but very little on GaSbBi and InSbBi. Here we report growth of dilute GaSbBi and InSbBi using molecular beam epitaxy (MBE). We have optimized growth conditions aiming at achieving maximum Bi incorporation. Surprisingly X-ray diffraction (XRD) revealed lattice contraction in GaSbBi and InSbBi although Bi atoms have a large atomic radius.

Nyckelord: Atomic radius, Auger recombination, Band gap reduction, Dilute nitrides, Experimental studies, GaAs, Growth conditions, Lattice contraction, Material property, Photoluminescence intensities, Spin orbits, Atoms, Bismuth compounds, Electron mobility, Fiber optic networks, Molecular beam epitaxy, Molecular beams, Nitrides, Transparent optical networks, X ray diffraction, Bismuth

Denna post skapades 2011-12-06. Senast ändrad 2012-04-11.
CPL Pubid: 149579


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Fotonik


Elektroteknik och elektronik

Chalmers infrastruktur