CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The philosophy of the approximate global convergence for multidimensional coefficient inverse problems

Larisa Beilina (Institutionen för matematiska vetenskaper, matematik) ; Michael Klibanov
Complex Variables and Elliptic Equations (1747-6933). Vol. 57 (2012), 2-4, p. 277-299.
[Artikel, refereegranskad vetenskaplig]

Both the most important and the most challenging question in the numerical treatment of a Multidimensional Coefficient Inverse Problem for a PDE is the following: How to obtain a point in a small neighborhood of the exact solution without any a priori knowledge of this solution? The recent numerical experience of the authors for two types of Multidimensional Coefficient Inverse Problems shows that in order to develop a truly efficient algorithm addressing this question, it is necessary to make some reasonable approximations which cannot be rigorously justified. Nevertheless, numerical studies show that corresponding algorithms work quite well. The authors call this approach "approximate global convergence/reconstruction". The goal of the paper is to present a short illustrative review of this philosophy.

Nyckelord: philosophy; coefficient inverse problems; approximate global convergence

Denna post skapades 2011-12-05. Senast ändrad 2015-01-29.
CPL Pubid: 149534


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Numerisk analys

Chalmers infrastruktur