CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Finite element approximation of the Cahn-Hilliard-Cook equation

Mihaly Kovacs ; Stig Larsson (Institutionen för matematiska vetenskaper, matematik) ; Ali Mesforush
SIAM Journal on Numerical Analysis (0036-1429). Vol. 49 (2011), 6, p. 2407-2429.
[Artikel, refereegranskad vetenskaplig]

We study the nonlinear stochastic Cahn–Hilliard equation perturbed by additive colored noise. We show almost sure existence and regularity of solutions. We introduce spatial approximation by a standard finite element method and prove error estimates of optimal order on sets of probability arbitrarily close to 1. We also prove strong convergence without known rate.

Nyckelord: Cahn–Hilliard–Cook equation, additive noise, Wiener process, existence, regularity, finite element, error estimate, strong convergence



Denna post skapades 2011-12-02. Senast ändrad 2014-09-02.
CPL Pubid: 149399

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Numerisk analys

Chalmers infrastruktur