CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

An extended crystal plasticity model for latent hardening in polycrystals

Swantje Bargmann ; B. Svendsen ; Magnus Ekh (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
Computational Mechanics (0178-7675). Vol. 48 (2011), 6, p. 631-645.
[Artikel, refereegranskad vetenskaplig]

In this contribution, a computational approach to modeling size-dependent self- and latent hardening in polycrystals is presented. Latent hardening is the hardening of inactive slip systems due to active slip systems. We focus attention on the investigation of glide system interaction, latent hardening and excess dislocation development. In particular, latent hardening results in a transition to patchy slip as a first indication and expression of the development of dislocation microstructures. To this end, following Nye (Acta Metall 1:153-162, 1953), Kondo (in Proceedings of the second Japan national congress for applied mechanics. Science Council of Japan, Tokyo, pp. 41-47, 1953), and many others, local deformation incompatibility in the material is adopted as a measure of the density of geometrically necessary dislocations. Their development results in additional energy being stored in the material, leading to additional kinematic-like hardening effects. A large-deformation model for latent hardening is introduced. This approach is based on direct exploitation of the dissipation principle to derive all field relations and (sufficient) forms of the constitutive relations as based on the free energy density and dissipation potential. The numerical implementation is done via a dual-mixed finite element method. A numerical example for polycrystals is presented.

Nyckelord: Strain gradient plasticity, Size-dependent hardening, Dual mixed finite, element method, Dislocation density, strain-gradient plasticity, single-crystals, variational formulation, dislocation density, deformation, elastoplasticity, microstructures, thermodynamics, potentials, accounts

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-12-01. Senast ändrad 2017-01-27.
CPL Pubid: 149349


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)


Hållbar utveckling

Chalmers infrastruktur