CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Heat maximal function on a Lie group of exponential growth

Peter Sjögren (Institutionen för matematiska vetenskaper) ; Maria Vallarino
Annales Academiæ Scientiarum Fennicæ Mathematica (1239-629X). Vol. 37 (2012), 2, p. 491-507.
[Artikel, refereegranskad vetenskaplig]

Let G be the Lie group R2 x R+ (semidirect product) endowed with the Riemannian symmetric space structure. Let X0; X1; X2 be a distinguished basis of left-invariant vector fields of the Lie algebra of G and write L for the corresponding Laplacian. In this paper, we show that the maximal function associated with the heat kernel of L is bounded from the Hardy space H1 to L1. We also prove that the heat maximal function does not provide a maximal characterization of the Hardy space H1

Nyckelord: Heat kernel, maximal function, Hardy space, Lie groups, exponential growth, hardy-spaces, rd-spaces, h-1, multipliers, operator, bmo

Denna post skapades 2011-11-22. Senast ändrad 2014-09-29.
CPL Pubid: 148825


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)


Matematisk analys

Chalmers infrastruktur