CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

CHANGES IN OXIDE CHEMISTRY DURING CONSOLIDATION OF Cr/Mn WATER ATOMIZED STEEL POWDER

Eduard Hryha (Institutionen för material- och tillverkningsteknik, Yt- och mikrostrukturteknik) ; Lars Nyborg (Institutionen för material- och tillverkningsteknik, Yt- och mikrostrukturteknik)
Powder Metallurgy Progress (1335-8987). Vol. 11 (2011), 1-2, p. 42-50.
[Artikel, refereegranskad vetenskaplig]

Modern water atomization methods allow industrial production of high-purity water atomized powder grades prealloyed with chromium and manganese. Surface coverage by oxide islands, formed by a variety of mixed oxides of chromium and manganese with higher thermodynamic stability, is below 10% that assumes good sinterability of such PM grades. However, there is still a risk of formation of oxides products on the powder surface during critical stages of powder consolidation, especially during heating stage. Therefore present work is focused on effect of alloying elements content on the possible scenarios of oxides reduction/formation/transformation in Fe-Cr-Mn-C powder systems. Accurate analysis of specimens, sampled during different stages of sintering process, by advanced analysis techniques (HR SEM+EDX) was combined with thermodynamic modelling of oxides stability. Obtained results indicate that oxide transformation process is governed by thermodynamic stability of present oxide phases in the line: Fe2O3→FeO→Fe2MnO4→Cr2FeO4→Cr2O3→MnCr2O4→MnO/MnSiOx→SiO2.

Nyckelord: alloyed sintered steels, surface analysis, surface oxide, sintering atmosphere, oxide reduction



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-11-14.
CPL Pubid: 148431

 

Institutioner (Chalmers)

Institutionen för material- och tillverkningsteknik, Yt- och mikrostrukturteknik (2005-2017)

Ämnesområden

Materialvetenskap
Produktion
Hållbar utveckling
Funktionella material
Övrig teknisk materialvetenskap

Chalmers infrastruktur