CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Biomass Retrieval Algorithm Based on P-band BioSAR Experiments of Boreal Forest

Lars M. H. Ulander (Institutionen för rymd- och geovetenskap, Radarfjärranalys) ; Gustaf Sandberg (Institutionen för rymd- och geovetenskap, Radarfjärranalys) ; Maciej J. Soja (Institutionen för rymd- och geovetenskap, Radarfjärranalys)
IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2011. Vancouver, 24-29 July 2011 p. 4245-4248. (2011)
[Konferensbidrag, övrigt]

A new biomass retrieval algorithm based on P-band multi-polarization backscatter has been developed and evaluated based on SAR and ground data over boreal forest. SAR data collections were conducted on three dates at a test site in southern Sweden (Remningstorp, biomass < 300 tons/ha; late winter to early summer 2007) and on a single date at a test site in northern Sweden (Krycklan, biomass < 200 tons/ha; fall 2008). The retrieval algorithm is a multiple linear regression model including the HV-polarized backscatter coefficient, the VV/HH backscatter ratio and the ground slope. Regression coefficients were determined from Krycklan data followed by algorithm evaluation using Remningstorp data. The results from the latter show that RMS errors vary in the range 29-42 tons/ha depending on date and stand type. The new algorithm is also compared with alternative algorithms and found to give significantly better performance. The developed model is a significant step towards an algorithm which gives consistent results across multiple sites and dates, i.e. when forest structure, topography and moisture conditions is expected to vary.

Nyckelord: backscatter, BIOMASS, biomass, BioSAR, boreal forest, P-band, retrieval algorithm, SAR

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-11-07. Senast ändrad 2016-05-24.
CPL Pubid: 148225


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Institutioner (Chalmers)

Institutionen för rymd- och geovetenskap, Radarfjärranalys (2010-2017)


Hållbar utveckling
Innovation och entreprenörskap (nyttiggörande)

Chalmers infrastruktur