CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Process Capability Analysis for Non-normal Distribution with Lower Specification Limit

Duygu Korkusuz (Institutionen för teknikens ekonomi och organisation, Industriell kvalitetsutveckling) ; Hendry Raharjo (Institutionen för teknikens ekonomi och organisation, Industriell kvalitetsutveckling) ; Bo Bergman (Institutionen för teknikens ekonomi och organisation, Industriell kvalitetsutveckling)
Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management 2011, Singapore, December 6-9, 2011 (21573611). p. 1466-1470. (2011)
[Konferensbidrag, refereegranskat]

Process capability analysis is an important element of any quality improvement initiative. However, estimating process capability is often problematic when it comes to non-normal distributions since the conventional methods sometimes give misleading results. In this paper, a new method for estimating process capability of non-normal distribution with only lower specification limit is proposed. The proposed method only considers the left tail of the distribution rather than taking all of the data points. For estimating the process capability, it employs least squares technique and normal approximation to the selected observations from the left tail. Here, the proposed method is only tested on lognormal distribution. Simulations and real-world data analysis are used for verification and validation purpose, respectively. An easy and practical guideline is also developed.

Nyckelord: process capability analysis, log-normal distribution, lower specification limit

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-10-20. Senast ändrad 2017-09-14.
CPL Pubid: 147485


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknikens ekonomi och organisation, Industriell kvalitetsutveckling (2005-2016)


Matematisk statistik
Industriell teknik och ekonomi

Chalmers infrastruktur