CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Light-Triggered Conductance Switching in Single-Molecule Dihydroazulene/Vinylheptafulvene Junctions

Samuel Lara-Avila (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; Andrey Danilov (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; Sergey Kubatkin (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; SL Broman ; CR Parker ; MB Nielsen
Journal of Physical Chemistry C (1932-7447). Vol. 115 (2011), 37, p. 18372-18377.
[Artikel, refereegranskad vetenskaplig]

Derivatives of 1,1-dicyano-1,8a-dihydroazulene (DHA) undergo light-induced ring-opening to a corresponding vinylheptafulvene (VHF), which in turn is thermally reverted to DHA. Here we have fabricated single-molecule DHA/VHF junctions and measured light-triggered conductance switching of these junctions. The DHA/VHF system studied includes a substituent group at the seven-membered ring. Light-induced conversion of this DHA to VHF in the junction is supported by a reduced tunnelling gap in tunnelling density of states. In fact, the reduced tunnelling gap corresponds to the reduced HOMO-LUMO gap of VHF relative to that of DHA as measured by absorption spectroscopy and electrochemistry. For this comparison, electrochemical measurements were performed on both the parent DHA/VHF system and the functionalized system that was subject to transport measurements. In one junction, it was possible to switch back and forth between DHA and VHF three times, the forward reaction being induced by light and the back-reaction occurring after waiting a period of time.

Nyckelord: Electron Transistor, Addition Energies, Dihydroazulenes, Photochronism, Acetonitrile, Surface

Denna post skapades 2011-10-14. Senast ändrad 2015-10-22.
CPL Pubid: 147252


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik



Chalmers infrastruktur