CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Dynamic Changes of Acoustic Load and Complex Impedance as Reporters for the Cytotoxicity of Small Molecule Inhibitors

M. Tarantola ; E. Sunnick ; D. Schneider ; Anna-Kristina Marel ; Angelika Kunze (Institutionen för teknisk fysik, Biologisk fysik) ; A. Janshoff
Chemical Research in Toxicology (0893-228X). Vol. 24 (2011), 9, p. 1494-1506.
[Artikel, refereegranskad vetenskaplig]

Cellular motility is the major driving force of numerous biological phenomena including wound healing, immune response, embryogenesis, cancer formation, and metastasis. We studied the response of epithelial FaDu monolayers cultured on gold electrodes of an acoustic resonator (quartz crystal microbalance, QCM) and impedance sensor (electric cell-substrate impedance sensing, ECIS) to externally applied chemical stimuli interfering with cytoskeleton organization. Epithelial cell motility of confluent monolayers is characterized by subtle cell shape changes and variations in the cell-substrate as well as cell-cell distance without net directionality of individual cells. The impact of small molecules such as cytochalasin D, phalloidin, and blebbistatin as well as paclitaxel, nocodazol, and colchicin on actin and microtubules organization was quantified by conventional sensors' readouts and by comparing the noise pattern of the signals which is attributed to cellular dynamics. The responsiveness of noninvasive and label-free techniques relying on cellular dynamics is compared to classical viability assays and changes of the overall impedance of ultrasmall electrodes or acoustic loads of a thickness shear mode resonator. Depending on the agent used, a distinct sensor response was found, which can be used as a fingerprint of the cellular response. Cytoskeletal rearrangements and nuclear integrity were corroborated by fluorescence microscopy and correlated to the readouts of QCM and ECIS.

Nyckelord: quartz-crystal microbalance, shear mode resonators, neuronal growth, cones, myosin-ii, mammalian-cells, actin cytoskeleton, dissipation, factor, cancer-cells, biosensor, adhesion

Denna post skapades 2011-10-14. Senast ändrad 2011-11-02.
CPL Pubid: 147238


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Biologisk fysik (2007-2015)



Chalmers infrastruktur