CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Ion-mediated changes of supported lipid bilayers and their coupling to the substrate. A case of bilayer slip?

Angelika Kunze (Institutionen för teknisk fysik, Biologisk fysik) ; Fang Zhao (Institutionen för teknisk fysik, Kemisk fysik) ; Anna-Kristina Marel (Institutionen för teknisk fysik, Kemisk fysik) ; Sofia Svedhem (Institutionen för teknisk fysik, Biologisk fysik) ; Bengt Kasemo (Institutionen för teknisk fysik, Kemisk fysik)
Soft Matter (1744-683X). Vol. 7 (2011), 18, p. 8582-8591.
[Artikel, refereegranskad vetenskaplig]

Ion-mediated (Ca(2+)) changes in viscoelastic, structural and optical properties of negatively charged solid supported lipid bilayers (SLBs) on SiO(2) surfaces were studied by means of quartz crystal microbalance with dissipation (QCM-D) monitoring and optical reflectometry. Despite the sensitivity of QCM-D to viscoeleastic/structural variations, it has not often been used to probe such changes for SLBs. SLBs were prepared from binary phospholipid mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, neutral) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG, negatively charged) on SiO(2) sensor surfaces in a Ca(2+)-containing buffer. Interestingly, for bilayers containing POPG fractions above 35%, large QCM-D dissipation shifts occurred, when Ca(2+) was removed from buffer in contact with the SLB (while maintaining 100 mM NaCl). The accompanying frequency changes were small. These Ca(2+) mediated QCM-D responses are reversible, and a signal for considerable changes in the viscoelastic and structural properties of the SLB. Variation of Ca(2+)-concentration revealed a threshold concentration of around 0.4 mM for the changes in the SLB to occur. Below this value, at >35% POPG concentration in the SLB, the SLB appears to become more weakly attached to the SiO(2) substrate, which is partly attributed to a weakening of the POPG-substrate interaction in the absence of Ca(2+). A consequence of this is an oscillation-amplitude dependent dissipation, which we attribute to slip of the bilayer at higher oscillation amplitudes. Complementary experiments using a combined QCM-D/reflectometry instrument showed that the Ca(2+)-induced changes in the viscoelastic/structural properties of the SLB are accompanied by changes in the optical properties. We discuss different scenarios to explain the observed reversible effect of Ca(2+)-ions on the dissipative and optical properties of the mixed SLBs. Based on our results we propose the observed phenomenon to be a combination of geometric changes, internal structural changes, changes in the interfacial water layer, and a slip mechanism, i.e. friction between the SLB and the substrate.

Nyckelord: interference-contrast microscopy, quartz-crystal microbalance, atomic-force microscopy, phospholipid-bilayers, qcm-d, vesicle, adsorption, unilamellar vesicles, divalent-cations, membranes, reflectometry, laughlin a, 1978, v513, p338, muralis w, 1986, v39, p119

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-10-13. Senast ändrad 2016-10-14.
CPL Pubid: 147187


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Biologisk fysik (2007-2015)
Institutionen för teknisk fysik, Kemisk fysik (1900-2015)


Nanovetenskap och nanoteknik

Chalmers infrastruktur