CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Comprehensive analysis of electrically-pumped GaSb-based VCSELs

S. Arafin ; A. Bachmann ; K. Vizbaras ; A. Hangauer ; Johan S. Gustavsson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Jörgen Bengtsson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Anders Larsson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; M. C. Amann
Optics Express (1094-4087). Vol. 19 (2011), 18, p. 17267-17282.
[Artikel, refereegranskad vetenskaplig]

This paper discusses several performance-related aspects of electrically-pumped GaSb-based buried tunnel junction VCSELs with an emission wavelength of 2.6 mu m based on theoretical and experimental results. These results allow a deeper insight into the internal device physics, such as radial diffusion of carriers, maximum continuous-wave operating temperature, diffraction loss, internal temperature, gain and loss parameters, internal quantum efficiency of the active region etc. These parameters can be taken into account while designing mid-infrared lasers which leads to an improved device performance. A simple thermal model of the devices based on the two-dimensional (2-D) finite element method using the material data from the literature is also presented. In addition, an application-based result utilizing these lasers for the measurement of absolute water vapor concentration by wavelength modulation spectroscopy (WMS) method are also described, hinting that devices are well-suited for the targeted sensing applications.

Nyckelord: vertical-cavity lasers, 2.3 mu-m, absorption-spectroscopy, thermal-conductivity, modulation, nty f, 2006, v118, p159, en j, 2009, tsiefer m, 2000

Denna post skapades 2011-10-12. Senast ändrad 2016-04-11.
CPL Pubid: 147160


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Fotonik



Chalmers infrastruktur