CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A comprehenisve analysis of benchmark 4: Pre-strain effect on springback of 2D draw bending

Per-Anders Eggertsen (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Kjell Mattiasson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; M. Larsson
AIP Conference Proceedings. 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, NUMISHEET 2011, Seoul, 21-26 August 2011 (0094-243X). Vol. 1383 (2011), p. 1064-1071 .
[Konferensbidrag, refereegranskat]

In order to be able to form high strength steels with low ductility, multi-step forming processes are becoming more common. Benchmark 4 of the NUMISHEET 2011 conference is an attempt to imitate such a process. A DP780 steel sheet with 1.4 mm thickness is considered. In order to understand the pre-strain effect on subsequent forming and springback, a 2D draw-bending is considered. Two cases are studied: one without pre-strain and one with 8% pre-stretching. The draw-bending model is identical to the "U-bend" problem of the NUMISHEET'93 conference. The purpose of the benchmark problem is to evaluate the capability of modern FE-methods to simulate the forming and springback of these kinds of problems. The authors of this article have previously made exhaustive studies on material modeling in applications to sheet metal forming and springback problems, [1],[2],[3]. Models for kinematic hardening, anisotropic yield conditions, and elastic stiffness reduction have been investigated. Also procedures for material characterization have been studied. The material model that mainly has been used in the current study is based on the Banabic BBC2005 yield criterion, and a modified version of the Yoshida-Uemori model for cyclic hardening. This model, like a number of other models, has been implemented as User Subroutines in LS-DYNA. The effects of various aspects of material modeling will be demonstrated in connection to the current benchmark problems. The provided material data for the current benchmark problem are not complete in all respects. In order to be able to perform the current simulations, the authors have been forced to introduce a few additional assumptions. The effects of these assumptions will also be discussed.

Nyckelord: Material modeling, multi-stage forming, pre-straining, springback



Denna post skapades 2011-10-12. Senast ändrad 2015-07-08.
CPL Pubid: 147144

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik

Ämnesområden

Teknisk mekanik

Chalmers infrastruktur