CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Interpolation based on stationary and adaptive AR(1) modeling

Eija Johansson (Institutionen för signaler och system) ; Marie Ström (Institutionen för signaler och system) ; Lennart Svensson (Institutionen för signaler och system, Signalbehandling) ; Mats Viberg (Institutionen för signaler och system, Signalbehandling)
36th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011; Prague; 22 May 2011 through 27 May 2011 (15206149). p. 4052-4055 . (2011)
[Konferensbidrag, refereegranskat]

In this paper, we describe a minimal mean square error (MMSE) optimal interpolation filter for discrete random signals. We explicitly derive the interpolation filter for a first-order autoregressive process (AR(1)), and show that the filter depends only on the two adjacent points. The result is extended by developing an algorithm called local AR approximation (LARA), where a random signal is locally estimated as an AR(1) process. Experimental evaluation illustrates that LARA interpolation yields a lower mean square error than other common interpolation techniques, including linear, spline and local polynomial approximation (LPA).

Nyckelord: adaptive filtering, autoregressive modeling, Interpolation, LMMSE estimation

Denna post skapades 2011-10-05. Senast ändrad 2014-09-02.
CPL Pubid: 146866


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)