### Skapa referens, olika format (klipp och klistra)

**Harvard**

Brännström, M., Coelingh, E. och Sjöberg, J. (2010) *Model-Based Threat Assessment for Avoiding Arbitrary Vehicle Collisions*.

** BibTeX **

@article{

Brännström2010,

author={Brännström, Mattias and Coelingh, Erik and Sjöberg, Jonas},

title={Model-Based Threat Assessment for Avoiding Arbitrary Vehicle Collisions},

journal={IEEE Transactions on Intelligent Transportation Systems},

issn={1524-9050},

volume={11},

issue={3},

pages={658-669},

abstract={This paper presents a model-based algorithm that estimates how the driver of a vehicle can either steer, brake, or accelerate to avoid colliding with an arbitrary object. In this algorithm, the motion of the vehicle is described by a linear bicycle model, and the perimeter of the vehicle is represented by a rectangle. The estimated perimeter of the object is described by a polygon that is allowed to change size, shape, position, and orientation at sampled time instances. Potential evasive maneuvers are modeled, parameterized, and approximated such that an analytical expression can be derived to estimate the set ofmaneuvers that the driver can use to avoid a collision. This set of maneuvers is then assessed to determine if the driver needs immediate assistance to avoid or mitigate an accident. The proposed threat-assessment algorithm is evaluated using authentic data from both real traffic conditions and collision situations on a test track and by using simulations with a detailed vehicle model. The evaluations show that the algorithm outperforms conventional threat-assessment algorithms at rear-end collisions in terms of the timing of autonomous brake activation. This is crucial for increasing the performance of collisionavoidance systems and for decreasing the risk of unnecessary braking. Moreover, the algorithm is computationally efficient and can be used to assist the driver in avoiding or mitigating collisions with all types of road users in all kinds of traffic scenarios.},

year={2010},

keywords={Automotive safety, collision avoidance, intersection collisions, rear-end collisions, threat assessment},

}

** RefWorks **

RT Journal Article

SR Electronic

ID 144746

A1 Brännström, Mattias

A1 Coelingh, Erik

A1 Sjöberg, Jonas

T1 Model-Based Threat Assessment for Avoiding Arbitrary Vehicle Collisions

YR 2010

JF IEEE Transactions on Intelligent Transportation Systems

SN 1524-9050

VO 11

IS 3

SP 658

OP 669

AB This paper presents a model-based algorithm that estimates how the driver of a vehicle can either steer, brake, or accelerate to avoid colliding with an arbitrary object. In this algorithm, the motion of the vehicle is described by a linear bicycle model, and the perimeter of the vehicle is represented by a rectangle. The estimated perimeter of the object is described by a polygon that is allowed to change size, shape, position, and orientation at sampled time instances. Potential evasive maneuvers are modeled, parameterized, and approximated such that an analytical expression can be derived to estimate the set ofmaneuvers that the driver can use to avoid a collision. This set of maneuvers is then assessed to determine if the driver needs immediate assistance to avoid or mitigate an accident. The proposed threat-assessment algorithm is evaluated using authentic data from both real traffic conditions and collision situations on a test track and by using simulations with a detailed vehicle model. The evaluations show that the algorithm outperforms conventional threat-assessment algorithms at rear-end collisions in terms of the timing of autonomous brake activation. This is crucial for increasing the performance of collisionavoidance systems and for decreasing the risk of unnecessary braking. Moreover, the algorithm is computationally efficient and can be used to assist the driver in avoiding or mitigating collisions with all types of road users in all kinds of traffic scenarios.

LA eng

DO 10.1109/TITS.2010.2048314

LK http://dx.doi.org/10.1109/TITS.2010.2048314

OL 30