CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Lipschitz continuity of the scattering operator for nonlinear Klein-Gordon equations

Philip Brenner
Applied and Computational Mathematics (1683-3511). Vol. 10 (2011), 2, p. 213-241.
[Artikel, refereegranskad vetenskaplig]

Abstract. We will give an overview of the Strichartz and Space Time Integral estimates for the Klein-Gordon and subcritical nonlinear Klein-Gordon equations, respectively. In this frame- work, the regularity of the solution and scattering operators for the nonlinear subcritical Klein- Gordon is studied, mainly using these tools and estimates of the nonlinearity in Besov spaces. We prove that these operators are (uniformly) Hölder continuous on the energy space for space dimension n >= 3, and Lipschitz continuous for n <= 8. AMS Subject Classification: 35L71, 35L10, 46E35.

Nyckelord: Nonlinear Klein-Gordon Equations, Space Time Integral Estimates, Strichartz In- equalities, Regularity of Solution- and Scattering Operators, Lipschitz Continuity

Denna post skapades 2011-08-15. Senast ändrad 2017-02-09.
CPL Pubid: 144224


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad informationsteknologi (GU) (GU)


Matematisk analys

Chalmers infrastruktur