CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Computational scheme for ab-initio predictions of chemical compositions interfaces realized by deposition growth

Jochen Rohrer (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Per Hyldgaard (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem)
Computer Physics Communications (0010-4655). Vol. 182 (2011), 9, p. 1814-1818.
[Artikel, refereegranskad vetenskaplig]

We present a novel computational scheme to predict chemical compositions at interfaces as they emerge in a growth process. The scheme uses the Gibbs free energy of reaction associated with the formation of interfaces with a specific composition as predictor for their prevalence. It explicitly accounts for the growth conditions by rate-equation modeling of the deposition environment. The Bell-Evans-Polanyi principle motivates our emphasis on an effective nonequilibrium thermodynamic description inspired by chemical reaction theory. We illustrate the scheme by characterizing the interface between TiC and alumina. Equilibrium thermodynamics favors a nonbinding interface, being in conflict with the wear-resistant nature of TiC/alumina multilayer coatings. Our novel scheme predicts that deposition of a strongly adhering interface is favored under realistic conditions.

Nyckelord: DFT, Chemical vapor deposition, CVD, Growth, Atomistic modeling, coatings, ase mw, 1998, mirel y, 2007



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-08-10. Senast ändrad 2015-12-17.
CPL Pubid: 143952

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)

Ämnesområden

Materialvetenskap
Nanovetenskap och nanoteknik
Innovation och entreprenörskap (nyttiggörande)
Ytor och mellanytor
Elektronstruktur
Struktur- och vibrationsfysik
Yt- och kolloidkemi

Chalmers infrastruktur