CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Van der Waals density functional calculations of binding in molecular crystals

Kristian Berland (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; O. Borck ; Per Hyldgaard (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem)
Computer Physics Communications (0010-4655). Vol. 182 (2011), 9, p. 1800-1804.
[Artikel, refereegranskad vetenskaplig]

A recent paper [J. Chem. Phys. 132 (2010) 134705] illustrated the potential of the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92 (2004) 246401] for efficient first-principle accounts of structure and cohesion in molecular crystals. Since then, modifications of the original vdW-DF version (identified as vdW-DF1) have been proposed, and there is also a new version called vdW-DF2 [Phys. Rev. B 82 (2010) 081101(R)], within the vdW-DF framework. Here we investigate the performance and nature of the modifications and the new version for the binding of a set of simple molecular crystals: hexamine, dodecahedrane, C60, and graphite. These extended systems provide benchmarks for computational methods dealing with sparse matter. We show that a previously documented enhancement of non-local correlations of vdW-DF1 over an asymptotic atom-based account close to and a few A beyond binding separation persists in vdW-DF2. The calculation and analysis of the binding in molecular crystals require appropriate computational tools. In this paper, we also present details on our real-space parallel implementation of the vdW-DF correlation and on the method used to generate asymptotic atom-based pair potentials based on vdW-DF.

Nyckelord: vdW-DF, Molecular crystals, Density functional theory, Cage molecules, Graphite, C60, generalized gradient approximation, x-ray, sublimation, enthalpies, accurate, surface, energy, model

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-08-10. Senast ändrad 2017-10-03.
CPL Pubid: 143941


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)


Nanovetenskap och nanoteknik
Den kondenserade materiens fysik
Biologisk fysik
Teoretisk kemi

Chalmers infrastruktur