CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Ionic Liquid Based Lithium Battery Electrolytes: Charge Carriers and Interactions Derived by Density Functional Theory Calculations

Knut Angenendt ; Patrik Johansson (Institutionen för teknisk fysik, Kondenserade materiens fysik)
Journal of Physical Chemistry B (1520-6106). Vol. 115 (2011), 24, p. 7808-7813.
[Artikel, refereegranskad vetenskaplig]

The solvation of lithium salts in ionic liquids (ILs) leads to the creation of a lithium ion carrying species quite different from those found in traditional nonaqueous lithium battery electrolytes. The most striking differences are that these species are composed only of ions and in general negatively charged. In many IL-based electrolytes, the dominant species are triplets, and the charge, stability, and size of the triplets have a large impact on the total ion conductivity, the lithium ion mobility, and also the lithium ion delivery at the electrode. As an inherent advantage, the triplets can be altered by selecting lithium salts and ionic liquids with different anions. Thus, within certain limits, the lithium ion carrying species can even be tailored toward distinct important properties for battery application. Here, we show by DFT calculations that the resulting charge carrying species from combinations of ionic liquids and lithium salts and also some resulting electrolyte properties can be predicted.

Nyckelord: polymer electrolytes, raman-spectroscopy, 1-butyl-3-methylimidazolium, bis(trifluoromethanesulfonyl)imide, solvation, diffusion, anion, bis(fluorosulfonyl)imide, conductivity, transport, solvent

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-07-05. Senast ändrad 2014-12-09.
CPL Pubid: 143077


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Kondenserade materiens fysik (1900-2015)


Teknisk fysik

Chalmers infrastruktur