CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Visual Tracking and Dynamic Learning on the Grassmann Manifold with Inference from a Bayesian Framework and State Space Models

Zulfiqar H. Khan (Institutionen för signaler och system, Signalbehandling) ; Irene Y.H. Gu (Institutionen för signaler och system, Signalbehandling)
IEEE int'l conf. on Image Processing (ICIP 2011) (15224880). p. 1433-1436 . (2011)
[Konferensbidrag, refereegranskat]

We propose a novel visual tracking scheme that exploits both the geometrical structure of Grassmann manifold and piecewise geodesics under a Bayesian framework. Two particle filters are alternatingly employed on the manifold. One is used for online updating the appearance subspace on the manifold using sliding-window observations, and the other is for tracking moving objects on the manifold based on the dynamic shape and appearance models. Main contributions of the paper include: (a) proposing an online manifold learning strategy by a particle filter, where a mixture of dynamic models is used for both the changes of manifold bases in the tangent plane and the piecewise geodesics on the manifold. (b) proposing a manifold object tracker by incorporating object shape in the tangent plane and the manifold prediction error of object appearance jointly in a particle filter framework. Experiments performed on videos containing significant object pose changes show very robust tracking results. The proposed scheme also shows better performance as comparing with three existing trackers in terms of tracking drift and the tightness and accuracy of tracked boxes.

Nyckelord: visual tracking, manifold tracking, manifold learning, Grassmann manifold, piecewise geodesics, particle filter, state space modeling

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-06-17. Senast ändrad 2013-09-09.
CPL Pubid: 141935


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)