CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A comparison of variational formats for porous media subjected to dynamic loading

Bernd Lenhof (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Fredrik Larsson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Kenneth Runesson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
International Journal for Numerical and Analytical Methods in Geomechanics (0363-9061). Vol. 35 (2011), 7, p. 807-823.
[Artikel, refereegranskad vetenskaplig]

This paper presents a comparison of two variational formats for fully saturated porous media subjected to dynamic loading, whereby the general situation of relative fluid acceleration is considered: (1) the classical three-field (u, p, w)-format and (2) a novel two-field (u, p)-format, where the seepage velocity w is a spatially 'local' field whose treatment resembles that of internal variables in material models. The limited numerical comparison shows that the (u, p)-format competes well with the (u, p, w)-format. Indeed, it is consistent with the general acceleration modeling in the full range of permeabilities. Moreover, in the low permeability regime (where the magnitude of w is insignificant), the new format reflects the situation pertinent to 'added-mass' and is more efficient than the classical (u, p, w)-format. Finally, the (u, p)-format can conveniently be implemented in existing FE-codes based on the 'added mass' formulation.

Nyckelord: hydro-mechanical modeling, porous media, binary phase mixture, poromechanics, algorithmic state variable, two-field variational format, wave-propagation, galerkin method, models, mixtures

Denna post skapades 2011-05-24. Senast ändrad 2015-06-12.
CPL Pubid: 140978


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)


Teknisk mekanik

Chalmers infrastruktur