CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A finite element time relaxation method

R. Becker ; E. Burman ; Peter Hansbo (Institutionen för matematiska vetenskaper, matematik)
Comptes Rendus Mathematique (1631-073X). Vol. 349 (2011), 5-6, p. 353-356.
[Artikel, refereegranskad vetenskaplig]

We discuss a finite element time-relaxation method for high Reynolds number flows. The method uses local projections on polynomials defined on macroelements of each pair of two elements sharing a face. We prove that this method shares the optimal stability and convergence properties of the continuous interior penalty (CIP) method. We give the formulation both for the scalar convection-diffusion equation and the time-dependent incompressible Euler equations and the associated convergence results. This note finishes with some numerical illustrations. (C) 2010 Academic des sciences. Published by Elsevier Masson SAS. All rights reserved.

Nyckelord: navier-stokes equations, galerkin approximations, stabilization



Denna post skapades 2011-04-28.
CPL Pubid: 139955

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur