CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Dynamic equations for a fully anisotropic elastic plate

Karl Mauritsson (Institutionen för tillämpad mekanik, Dynamik) ; Peter D. Folkow (Institutionen för tillämpad mekanik, Dynamik) ; Anders Boström (Institutionen för tillämpad mekanik, Dynamik)
Journal of Sound and Vibration (0022-460X). Vol. 330 (2011), 11, p. 2640-2654.
[Artikel, refereegranskad vetenskaplig]

A hierarchy of dynamic plate equations is derived for a fully anisotropic elastic plate. Using power series expansions in the thickness coordinate for the displacement components, recursion relations are obtained among the expansion functions. Adopting these in the boundary conditions on the plate surfaces and along the edges, a set of dynamic equations with pertinent edge boundary conditions are derived on implicit form. These can be truncated to any order and are believed to be asymptotically correct. For the special case of an orthotropic plate, explicit plate equations are presented and compared analytically and numerically to other approximate theories given in the literature. These results show that the present theory capture the plate behavior accurately concerning dispersion curves, eigenfrequencies as well as stress and displacement distributions.

Nyckelord: approximate boundary-conditions, asymptotic theory, flexural waves, order theory, rods, deformation

Denna post skapades 2011-04-28. Senast ändrad 2015-12-16.
CPL Pubid: 139930


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik (1900-2017)



Chalmers infrastruktur