CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Plasmonic Nanostructures for Molecular Spectroscopy

Björn Brian (Institutionen för teknisk fysik, Bionanofotonik)
Göteborg : Chalmers University of Technology, 2011. - 46 s.

This thesis focuses on the fabrication, characterization and utilization of nanostructures for chemical sensing and optical enhancement processes. Noble metal nanostructures can support localized surface plasmon resonances (LSPRs), which amplify the strength of the electromagnetic field close to the structures. The LSPR is very sensitive to the surrounding refractive index, making metal nanostructures an interesting alternative to the commercially available flat-film surface plasmon chemo- and biosensors of today. Furthermore, the increased local field can enhance the efficiency of light-scattering and luminescence processes from molecules, which can prove useful in a wide range of applications, for example in the life sciences. Nanoplasmonic sensor surfaces in the form of thin gold films perforated by nanoholes were fabricated on different supporting substrates using colloidal lithography, Paper I. It was shown that the bulk refractive index sensitivity could be increased by factor of ca 40% by fabricating the sensing structure on Teflon instead of on conventional glass substrates. The reason for this amplification is a redistribution of the evanescent field into the aqueous sensing region due to the similar refractive indices of Teflon and water. Preliminary studies of surface-enhanced fluorescence (SEF) were performed using gold nanodisks of varying radii but fixed height, fabricated using electron-beam lithography (EBL). Enhancement as a function of the spectral overlap between the fluorophore and the nanoparticle resonance was studied. Two fluorophores, carboxy-X-rhodamine (ROX) and carboxyfluorescein (FAM) were conjugated with thiolated DNA, which was chemisorbed to nanodisks of varying LSPR wavelength. The results indicate that the relative enhancement is largest for resonances overlapping with the fluorophore absorption and emission spectra. Further, enhancement processes were studied for molecules adsorbed to colloidal surface-supported nanoparticle aggregates acting as optical antennas, Paper II. In particular, the directionality of surface-enhanced Raman scattering (SERS) was measured by recording Fourier images in an optical microscope. Rhodamine 6G (R6G) physisorbed to colloidal dimers and trimers was found to scatter light at angles above the critical angle of the air-glass interface, stressing the use of high-NA objectives for SERS studies. In addition, the emission from molecules adsorbed to nanoparticle dimers was found to produce antenna lobes perpendicular to the dimer axis, demonstrating that the "hot site" in the junction between the particles dominates the SERS response. In contrast, for nanoparticle trimers, the scattering was circularly symmetric in the aggregate plane.

Nyckelord: Nanoparticles, EBL, SEF, SERS, biosensors, DNA, fluorescence, rhodamine 6G

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-04-25. Senast ändrad 2011-05-01.
CPL Pubid: 139740


Institutioner (Chalmers)

Institutionen för teknisk fysik, Bionanofotonik (2007-2015)


Nanovetenskap och nanoteknik
Yt- och kolloidkemi
Bioanalytisk teknik

Chalmers infrastruktur

Relaterade publikationer

Inkluderade delarbeten:

Sensitivity enhancement of nanoplasmonic sensors on low refractive index substrates

Angular Distribution of Surface-Enhanced Raman Scattering from Individual Au Nanoparticle Aggregates


Datum: 2011-05-26
Tid: 13:15
Lokal: Fasrummet, A820, MC2, Chalmers Tekniska Högskola
Opponent: Dr. Ann-Sofie Cans, Institutionen för Fysikalisk kemi, Chalmers Tekniska Högskola