CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Hybrid Discontinuous Finite Element/Finite Difference Method for Maxwell's Equations

Larisa Beilina (Institutionen för matematiska vetenskaper, matematik)
AIP Conference Proceedings; International Conference on Numerical Analysis and Applied Mathematics Rhodes, GREECE, SEP 19-25, 2010 (0094-243X ). Vol. 1281 (2010), p. 324-328.
[Konferensbidrag, refereegranskat]

A fully explicit, discontinuous hybrid finite element/finite difference method is proposed for the numerical solution of Maxwell's equations in the time domain. We call the method hybrid since the different numerical methods, interior penalty discontinuous finite element method, developed in [1], and finite difference method [2], are used in different parts of the computational domain. Thus, the flexibility of finite elements is combined with the efficiency of finite differences. Our numerical experiment illustrates stability of the proposed new method.

Nyckelord: adaptive finite element method, discontinuous finite element method, hybrid FEM/FDM methods, Maxwell's equations



Denna post skapades 2011-04-21. Senast ändrad 2015-07-09.
CPL Pubid: 139660

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Tillämpad matematik

Chalmers infrastruktur