CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Oxidation and reduction of Pd(100) and aerosol-deposited Pd nanoparticles

R. Westerstrom ; M. E. Messing ; S. Blomberg ; Anders Hellman (Institutionen för teknisk fysik, Kemisk fysik ; Kompetenscentrum katalys (KCK)) ; Henrik Grönbeck (Institutionen för teknisk fysik, Kemisk fysik ; Kompetenscentrum katalys (KCK)) ; J. Gustafson ; N. M. Martin ; O. Balmes ; R. van Rijn ; J. N. Andersen ; K. Deppert ; H. Bluhm ; Z. Liu ; M. E. Grass ; M. Havecker ; E. Lundgren
Physical Review B (1098-0121). Vol. 83 (2011), 11,
[Artikel, refereegranskad vetenskaplig]

Using in situ high-pressure x-ray photoelectron spectroscopy, we have followed the oxidation and the reduction of Pd model catalysts in oxygen and CO pressures in the millibar range. The study includes a Pd(100) single crystal as well as SiOx-supported Pd nanoparticles of 15 or 35 nm diameter, respectively. We demonstrate that nanoparticles also form ultrathin surface oxides prior to the onset of the bulk PdO. The Pd nanoparticles are observed to bulk oxidize at sample temperatures 40 degrees lower than the single-crystal surface. In the Pd 3d(5/2) and the O 1s spectrum, we identify a component corresponding to undercoordinated atoms at the surface of the PdO oxide. The experimentally observed PdO core-level shift is supported by density functional theory calculations. In a CO atmosphere, the Pd 3d(5/2) component corresponding to undercoordinated PdO atoms is shifted by + 0.55 eV with respect to PdO bulk, demonstrating that CO molecules preferably adsorb at these sites. CO coordinated to Pd atoms in the metallic and the oxidized phases can also be distinguished in the C 1s spectrum. The initial reduction by CO is similar for the single-crystal and the nanoparticle samples, but after the complete removal of the oxide we detect a significant deviation between the two systems, namely that the nanoparticles incorporate carbon to form a Pd carbide. Our results indicate that CO can dissociate on the nanoparticle samples, whereas no such behavior is observed for the Pd(100) single crystal. These results demonstrate the similarities, as well as the important differences, between the single crystals used as model systems for catalysis and nm-sized particles on oxide supports.

Nyckelord: ray photoelectron-spectroscopy, root-5)r27-degrees-o surface oxide, range 1-150 torr, in-situ xps, co oxidation, catalyst nanoparticles, pd(111) oxidation, single-crystals, spark discharge, model catalyst

Denna post skapades 2011-04-21. Senast ändrad 2017-09-12.
CPL Pubid: 139649


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för teknisk fysik, Kemisk fysik (1900-2015)
Kompetenscentrum katalys (KCK)


Kemisk fysik

Chalmers infrastruktur