CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A nonconforming rotated Q(1) approximation on tetrahedra

Peter Hansbo (Institutionen för matematiska vetenskaper, matematik)
Computer Methods in Applied Mechanics and Engineering (0045-7825). Vol. 200 (2011), 9-12, p. 1311-1316.
[Artikel, refereegranskad vetenskaplig]

In this paper we construct an approximation that uses midpoints of edges on tetrahedra in three dimensions. The construction is based on the three-dimensional version of the rotated Q(1)-approximation proposed by Rannacher and Turek (1992)16]. We prove a priori error estimates for finite element solutions of the elasticity equations using the new element. Since it contains (rotated) bilinear terms it performs substantially better than the standard constant strain element in bending. It also allows for under-integration (in the form of one point Gauss integration of volumetric terms) in near incompressible situations. Numerical examples are included. (C) 2010 Elsevier B.V. All rights reserved.

Nyckelord: Nonconforming method, Tetrahedral element, Linear elasticity, element

Denna post skapades 2011-04-13.
CPL Pubid: 139028


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Numerisk analys

Chalmers infrastruktur