CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Nanoplasmonic sensing and QCM-D as ultrasensitive complementary techniques for kinetic corrosion studies of aluminum nanoparticles

Markus Schwind (Institutionen för teknisk fysik, Kemisk fysik) ; Christoph Langhammer (Institutionen för teknisk fysik, Kemisk fysik) ; Bengt Kasemo (Institutionen för teknisk fysik, Kemisk fysik) ; Igor Zoric (Institutionen för teknisk fysik, Kemisk fysik)
Applied Surface Science (0169-4332). Vol. 257 (2011), 13, p. 5679-5687.
[Artikel, refereegranskad vetenskaplig]

Corrosion (oxidation) kinetics of Al nanodisks, 262nm in diameter and 20nm in height, was measured in degassed Milli-Q water at 23 degrees C and neutral pH by quartz crystal microbalance with dissipation monitoring (QCM-D) and nanoplasmonic sensing. The former detects the changes of the resonance frequency and the damping of the oscillation of a piezoelectric quartz crystal resonator. The latter detects the changes of the localized surface plasmon resonance (LSPR) in the metallic part of the Al nanoparticle, caused both by the shrinking metallic core and the changes in the dielectric environment as the oxide grows. Highly resolved kinetic data were obtained which show different corrosion stages. The two techniques yield complementary information not obtainable with one technique alone. Two main corrosion mechanisms, namely homogeneous oxide growth and nanoparticle fragmentation and roughening, are distinguished. The time dependence of the corrosion kinetics, determined using QCM-D, is in agreement with weight gain studies of bulk Al found in literature. The nanoplasmonic sensing measurements are compared to analytical model calculations of LSPR shifts which yield an estimate for the increase of oxide thickness during homogeneous oxide growth. (C) 2011 Elsevier B. V. All rights reserved.

Nyckelord: Corrosion, Metal oxidation in water, Aluminum nanoparticles, Localized, surface plasmon resonances, Nanoplasmonic sensing, Quartz crystal, microbalance with dissipation monitoring, quartz-crystal microbalance, surface-plasmon resonance, hydrogen, generation, liquid water, solar-cells, in-situ, combustion, oxidation, film, spectroscopy



Denna post skapades 2011-03-31. Senast ändrad 2014-03-24.
CPL Pubid: 138469

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Kemisk fysik (1900-2015)

Ämnesområden

Fysik
Teknisk fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Nanoplasmonic Sensing for Materials Science