CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Conversion of Sulfur during Pulverized Oxy-coal Combustion

Daniel Fleig (Institutionen för energi och miljö, Energiteknik) ; Klas Andersson (Institutionen för energi och miljö, Energiteknik) ; Filip Johnsson (Institutionen för energi och miljö, Energiteknik) ; Bo Leckner (Institutionen för energi och miljö, Energiteknik)
Energy & Fuels (0887-0624). Vol. 25 (2011), p. 647-655.
[Artikel, refereegranskad vetenskaplig]

On the basis of experiments in the Chalmers 100 kW(th) oxy-fuel test facility, this study presents an analysis of sulfur chemistry of pulverized lignite combustion, comparing oxy-fuel and air-fired conditions. Four test cases were investigated: an air-fired case, two oxy-fuel cases with dry recycling (30 and 35 vol % O-2), and one oxy-fuel case with wet recycling (43 vol % O-2 on a dry basis). The amounts of sulfur in the flue-gas, ashes, and condensed water from the condenser were quantified, and a sulfur mass balance was established. The composition of the ashes and the ash-forming matter in the fuel was analyzed. The ashes were investigated by X-ray diffraction, while the size of fuel and ash particles was determined by laser diffraction. In general, the results show that the lignite has a high sulfur self-retention by ash, especially in oxy-fuel combustion. The experiments also show that the conversion of fuel S to SO2 from oxy-fuel combustion is around 35% lower compared to air-fired conditions, whereas the flue-gas concentration of SO2 is higher in oxy-fuel combustion because of the absence of air-borne nitrogen.

Denna post skapades 2011-03-21. Senast ändrad 2016-08-15.
CPL Pubid: 138202


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för energi och miljö, Energiteknik (2005-2017)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

The Fate of Sulfur during Oxy-Fuel Combustion

Experimental and Modeling Studies of Sulfur-Based Reactions in Oxy-Fuel Combustion