CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Bianthrone in a Single-Molecule Junction: Conductance Switching with a Bistable Molecule Facilitated by Image Charge Effects

Samuel Lara-Avila (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; Andrey Danilov (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; V. Geskin ; S. Bouzakraoui ; Sergey Kubatkin (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik) ; J. Cornil ; T. Bjornholm
Journal of Physical Chemistry C (1932-7447). Vol. 114 (2010), 48, p. 20686-20695.
[Artikel, refereegranskad vetenskaplig]

Bianthrone is a sterically hindered compound that exists in the form of two nonplanar isomers. Our experimental study of single-molecule junctions with bianthrone reveals persistent switching of electric conductance at low temperatures, which can be reasonably associated with molecular isomerization events. Temperature dependence of the switching rate allows for an estimate of the activation energy of the process, on the order of 120 +/- 50 meV. Quantum-chemical calculations of the potential energy relief of neutral bianthrone and its anion, including identification of transition states, yields the isolated molecule isomerization barriers too high vs the previous estimate, though compatible with previous experimental studies in solution. Nevertheless, we show that the attraction of the anion in the vicinity of the metal surface by its image charge can change the energetic landscape, in particular, by significantly reducing the barrier to values compatible with the observed switching behavior.

Nyckelord: electron-transfer reactions, conformational-changes, dynamic, stereochemistry, overcrowded ethylenes, gold electrodes, aromatic enes, transistor, thermochromism, reduction

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2011-03-21. Senast ändrad 2015-10-22.
CPL Pubid: 138164


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik


Nanovetenskap och nanoteknik

Chalmers infrastruktur