CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Large scale integration of wind power: moderating thermal power plant cycling

Lisa Göransson (Institutionen för energi och miljö, Energiteknik) ; Filip Johnsson (Institutionen för energi och miljö, Energiteknik)
Wind Energy (1095-4244). Vol. 14 (2011), 1, p. 91-105.
[Artikel, refereegranskad vetenskaplig]

Power plant cycling in thermal plants typically implies high costs and emissions. It is, therefore, important to find ways to reduce the influence of variations in wind power generation on these plants without forsaking large amounts of wind power. Using a unit commitment model, this work investigates the possibility to reduce variations by means of a moderator, such as a storage unit or import/export capacity. The relation between the reduction in CO2-emissions and the power rating of the moderator is investigated, as well as the benefit of a moderator which handles weekly variations compared with a moderator which has to be balanced on a daily basis. It is found that a daily balanced moderator yields a decrease in emissions of about 2% at 20% wind power grid penetration. The reduction in emissions is mainly due to an avoidance of start-up and part load emissions and a moderator of modest power rating is sufficient to achieve most of this decrease. In the case of a weekly balanced moderator, emissions are reduced as the moderator power rating increases. At 40% wind power grid penetration, a weekly balanced moderator reduces emissions with up to 11%. The major part of this reduction is due to the avoidance of wind power curtailment. The simulated benefit (CO2-emissions and costs) from adding a general moderator is compared with emissions from Life Cycle Assessment (LCA) studies and cost data of five available moderator technologies; transmission capacity, pumped hydro power, compressed air energy storage, flow batteries and sodium sulphur batteries. Copyright (C) 2010 John Wiley & Sons, Ltd.

Nyckelord: wind power, power plant cycling, integration, intermittent variation, energy storage, air energy-storage, system, electricity, generation, operation, market, netherlands, batteries

Denna post skapades 2011-03-17.
CPL Pubid: 138099


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för energi och miljö, Energiteknik



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

The impact of wind power variability on the least-cost dispatch of units in the electricity generation system