CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Effects of Surface Pressure and Internal Friction on the Dynamics of Shear-Driven Supported Lipid Bilayers

Peter Jönsson (Institutionen för teknisk fysik, Biologisk fysik) ; Fredrik Höök (Institutionen för teknisk fysik, Biologisk fysik)
Langmuir (0743-7463). Vol. 27 (2011), 4, p. 1430-1439.
[Artikel, refereegranskad vetenskaplig]

Supported lipid bilayers (SLBs) are one of the most common model systems for cell membrane studies. We have previously found that when applying a bulk flow of liquid above an SLB the lipid bilayer and its constituents move in the direction of the bulk flow in a rolling type of motion, with the lower monolayer being essentially stationary. In this study, a theoretical platform is developed to model the dynamic behavior of a shear-driven SLB. In most regions of the moving SLB, the dynamics of the lipid bilayer is well explained by a balance between the hydrodynamic shear force arising from the bulk flow above the lipid bilayer and the friction between the upper and lower monolayers of the SLB. These two forces result in a drift velocity profile for the lipids in the upper monolayer of the SLB that is highest at the center of the channel and decreases to almost zero at the corners of the channel. However, near the front of an advancing SLB a very different flow behavior is observed, showing an almost constant drift velocity of the lipids over the entire bilayer front. In this region, the motion of the SLB is significantly influenced by gradients in the surface pressure as well as internal friction due to molecules that have accumulated at the front of the SLB. It is shown that even a modest surface fraction of accumulated molecules (similar to 1%) can drastically affect the behavior of the SLB near the bilayer front, forcing the advancing lipids in the SLB away from the center of the channel out toward the sides.

Nyckelord: spatial fourier-analysis, hydrophilic surfaces, rotational drag, membranes, diffusion, tension, motion



Denna post skapades 2011-03-17. Senast ändrad 2012-02-10.
CPL Pubid: 138069

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Biologisk fysik (2007-2015)

Ämnesområden

Fysik
Kemi

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Properties and Applications of Shear-Driven Lipid Bilayers