CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Computational homogenization based on a weak format of micro-periodicity for RVE-problems

Fredrik Larsson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Kenneth Runesson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Sepehr Saroukhani (Institutionen för tillämpad mekanik, Dynamik) ; Reza Vafadari (Institutionen för tillämpad mekanik, Förbränning)
Computer Methods in Applied Mechanics and Engineering (0045-7825). Vol. 200 (2011), 1-4, p. 11-26.
[Artikel, refereegranskad vetenskaplig]

Computational homogenization with a priori assumed scale separation is considered, whereby the macroscale stress is obtained via averaging on Representative Volume Elements (RVE:s). A novel variational formulation of the RVE-problem, based on the assumption of weak micro-periodicity of the displacement fluctuation field, is proposed. Notably, independent FE-discretization of boundary tractions (Lagrange multipliers) allows for a parameterized transition between the conventional "strong" periodicity and Neumann boundary conditions. In this paper, the standard situation of macroscale strain control is considered. Numerical results demonstrate the convergence properties with respect to (1) the approximation of displacement and tractions and (2) the RVE-size for random realizations of the microstructure.

Nyckelord: Homogenization, Elasticity, FEM, Mixed variational formulation, variational formulation, representative volume, plasticity, microstructures, simulation, algorithm, contact, macro



Denna post skapades 2011-03-10. Senast ändrad 2016-10-18.
CPL Pubid: 137769

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)