CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Controlling Chemistry in Dynamic Nanoscale Systems

Aldo Jesorka (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Ludvig Lizana (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Zoran Konkoli (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Ilja Czolkos (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Owe Orwar (Institutionen för kemi- och bioteknik, Fysikalisk kemi)
Single Molecule Spectroscopy in Chemistry, Physics and Biology (0172-6218). Vol. 96 (2010), p. 449-468.
[Konferensbidrag, övrigt]

The biological cell, the fundamental building block of the living world, is a complex maze of compartmentalized biochemical reactors that embed tens of thousands of chemical reactions running in parallel. Several, if not all, reactors are systematically interconnected by a web of nanofluidic transporters, such as nanotubes, vesicles, and membrane pores with ever-changing shapes and structures [1]. To initiate, terminate, or control chemical reactions, small-scale poly-/pleiomorphic systems undergo rapid and violent shape changes with energy barriers close to kBT , where, due to the small dimensions, diffusional mixing of reactants is rapid. The geometry, i.e. volume, and shape changes can be utilized to control both kinetic and thermodynamic properties of the system. This is in sharp contrast to the man-made macroscopic bioreactors, in which mixing of reactants is aided by mechanical means, such as stirring or sonication, under the assumption that reactions take place in volumes that do not change over time. Such reaction volumes are compact, like a sphere, a cube, or a cylinder, and do not provide for variation of shape. Ordinarily, reaction rates, mechanisms, and thermodynamic properties of chemical reactions in condensed media are based on these assumptions. A number of important questions and challenges arise from these facts. For example, how will we achieve fundamental understanding of how reactor shape affects chemistry on the nanoscale, how do we develop appropriate and powerful experimental model systems, and last but not least what impact will this knowledge have on the design and function of nanotechnological devices with new operation modes derived from natural principles.

Denna post skapades 2011-03-04. Senast ändrad 2017-06-29.
CPL Pubid: 137607


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Fysikalisk kemi (2005-2014)
Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)



Chalmers infrastruktur